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Many studies have been devoted to the analysis of the kinetics of homogeneous nuclea- 
tion (see, for instance the survey of Kotake and Glass [i], based onVolmer's andWeber'sorig- 
inal work [2]). Most of these studies rely on some variation of the treatment developed by 
Becker and Doring [3]. Some of their assumptions are rather questionable, however. In addi- 
tion, calculations based on a classical model agree only qualitatively with experimental data. 
An analysis of the available experimental studies shows that a satisfactory description is 
obtained only for condensation in diffusion chambers [4], where the supersaturation varies 
at a relatively slow rate. The results of experiments performed in free jets and high effi- 
ciency heat exchangers disagree significantly with classical-model calculations. The ex- 
perimental nucleation current may differ from the classical value by as much a 8-9 orders of 
magnitude [@]. The description of condensation in such systems thus requires a more realis- 
tic condensation model. 

In this paper we propose converting to new variables [6] in the equations of the quasi- 
chemical condensation model [7], and separating the system variables into slow and fast ones 
[8, 9]. Nucleation is then considered as the formation of a quasi-stationary distribution 
of fast variables. The cutoff between slow and fast variables is identified with a quasi- 
critical nucleus and defines the nucleus size, which is in certain cases significantly dif- 
ferent from the:size calculated by Classical capillary theory using the Kelvin-Gibbs equation. 
Analysis of the fast-variable relaxation equations yields the quasi-stationary distribution 
and a formula for the nucleation current. 

When referring to classical theory, we postulate that the quasi-stationary distribution 
cutoff is the critical nucleus corresponding to maximum cluster potential energy. 

i. The Quasi-Chemical Condensation Model and the Equilibrium Cluster-Size Distribution 
Function. Homogeneous condensation is commonly described by means of a quasi-chemical con- 
densation model [7]. The usefulness of the model is confirmed by direct molecular-dynamics cal- 
culations [i0~. Analysis of a number of studies on the subject shows that it is possible to 
neglect the coagulation of even small c~usters, because the concentration of monomers is much 
higher than the concentration of clusters of any size. 

Since interaction with g-mers has a negligible effect on the number of monomers at the 
nucleation stage [ii], the monomer concentration is controlled by hydrodynamic processes and 
is determined by the external macroparameters of the system. Under these conditions, the 
mean number ng of clusters of size g per unit volume is defined by 

"+ 2 .... n g = I g - - I g + l ,  I g = - - h ' ~ n g + k g _ l n g _ l n  > g =  . ~ ,  ( 1 )  

w h e r e  k~ i s  t h e  r a t e  c o n s t a n t  o f  f o r m a t i o n  o f  c l u s t e r s  o f  s i z e  g o u t  o f  c l u s t e r s  o f  s i z e  
g - 1, and  k~ i s  t h e  r a t e  c o n s t a n t  o f  t h e  r e v e r s e  r e a c t i o n .  I f  e n e r g y  r e l a x a t i o n  i s  t a k e n  
i n t o  a c c o u n t ,  Eqs .  ( 1 )  m u s t  be  s u p p l e m e n t e d  by t h e  c l u s t e r  e n e r g y  e q u a t i o n s ;  h e r e  we c o n s i d e r  
o n l y  i s o t h e r m a l  n u c l e a t i o n ,  h o w e v e r .  The a s s o c i a t i o n  a nd  d i s s o c i a t i o n  c o n s t a n t s  a r e  r e l a t e d  
by the equilibrium constant, i.e. k~ ,o,+ e e e , = ~gkg. k~ = ng_l~i/ng , and the right-hand sides of 

(I) thus yield the detailed balance I Ig(n~) - O. The equilibrium distribution n~ is derived 

below. Let us use the model k2 = ag2/S = ah4ar~(kT/2nml)i/2g2/~(= ~ is the coefficient of condensa- 

tion , r I and m I are the monomer radius and mass, and T is the temperature). Then 
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(2) 

To proceed further, we have to analyze the equilibrium cluster-size distribution func- 
tion. The function n~ can be the distribution function corresponding to complete equilibrium 
in the system, i.e., 

e t  e 
ng = n 1 exp  ( - -  @g2/3), @ = @ (Y) = 4ar~o/kT ( 3 )  

(o is the coefficient of surface tension). The equilibrium constant then becomes 

k~ = ng_ll~l/ng . ~ t  ~/ ~t Complete equilibrium implies that the system does not include any super- 

saturation (S = i), which may be defined as S = n~/n~ = n~ . Besides its usual thermodyna- 
mic derivation, the distribution (3) can also be obtained from the quasi-chemical condensa- 
tion model equations (i) for a finite system by normalizing and passing to the thermodynamic 

e 
limit. In addition to the distribution (3), with n I denoting the vapor concentration, it is then 

also possible to determine the phase separation, i.e., to describe the phase transition [12]. 
With respect to (3), it is worth noting that the concept of surface tension is inapplicable to 
the energy of small clusters. In spite of many experimental studies [13] and molecular-dynam- 
ics calculations [14], it has been impossible to derive an expression for the cluster free 
energy based on a unified approach. The available experimental data [15] indicate that sur- 
face tension can be used for clusters of size g > i02. Within our context, the dependence 
of the free energy on size is not of specific importance, and in order to simplify calcula- 
tions Eq. (3) may be conveniently used. 

Let us examine the transition from one equilibrium state at the temperature T O to another 
0 ct state at the temperature T I. Substituting (3) in (2) and setting n ~ = n ~ = l z , , ( T o ) ~  we get 

(4) 

(O 0 -- Q(T0)). The derivation of (4) is based on an expansion for large g and the fact that 

~t / et exp(20/391/3)=O(1). According to (4), the relaxation rate ng decreases with in- 
~g- -1 ,  n g  ~ 

creasing g, and when g - +  ~ , 17g -+ O. This is consistent with the results of Turner et al. 

[16], who studied the growth of macroscopic droplets in a free molecular flow. As noted in 
[ii], in most real systems the gas-dynamical parameters, including the monomer concentration 
nl, very much more slowly than the relaxation time of the small-cluster concentrations n~. In 
this case ~i >> n~ for all g, the condensation is knownas frozen, and the kinetics are fairly easy 
to describe. We are interested in the case when it is possible to define a gl for which 
n~ N ~ .  It is then clear from the foregoing that the variables are fast with respect to 
n I for g < g~, and slow for g > gl. The equilibrium distribution function is a general func- 
tion of the slow variables. If the large-cluster concentration is low relative to the small- 
cluster concentration, however, an analysis of equilibrium statistical physics [17] yields 
the equilibrium function 

e 
ng = n~ exp  (g in  S - -  @gl/~). (5) 

The factor before the exponential above is n i, rather than n~ as in (3). This reflects the 
fact that we are considering not complete equilibrium, bu t equilibrium at a fixed n i. The 
same applies to the equilibrium constant k~ ~ n~-inl/ng.e / e k~ = ~zl/n 2.2 ~ The basic difference 

from the classical treatment is that the distribution is used not for clusters smaller than 
the critical size (g < g,), where g, = (2@/31n S)3~ but for clusters of size g < gl (gl being 
the separation point between the fast and slow variables). This separation defines more 
rigorously the domain of the distribution (5), and, as will be seen, yields results signif- 
icantly different from those of classical analysis. 

In order to find gl, we introduce new variables in the system of equations (i), using 
the substitution [18, 19] 

Fg ~/n~, (6) 

which converts (i) to the form 
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~'g = BF(g ) + EF(g ) + HF(g); (7) 

R ~ ( g ) =  AFF~g+ B~Fg+ Cr, A T = ( k + g + l - - k + ) ,  

B v = - - A F - - C F ,  C F =  - - k g + k g - + l ;  

EF (g) P"7 (1 Fg/Fg_I) "+ (1 2. = -- -- kg+l -- Fg+l/Fg) Fg, 

HF(g ) -- (2~3/3g~/3 --  S/S)Fg.  

E q u a t i o n  (10) i s  d e r i v e d  by an expans ion  f o r  l a r g e  g. I f  E F and H F v a n i s h ,  Eq. 

(8) 

(9) 

(lo) 

(7) becomes 
the Riccati equation, and we therefore call R F the Ricatti component. The term E F (nondiag- 
onal component) is the degree of nonadiabaticity of the F~ variables, and H F (hydrodynamic 
component) denotes the effect of the rate of change of th~ macroscopic (hydrodynamic) param- 
eter on the rate of change of FB. If we assume that the distribution is sufficiently 
smooth, i.e. [Fg/Fg_!--il<<i, as confirmed by direct numerical calculation, then EF<< 
Rr ,  HF. 

In order to evaluate the Riccati component, we use the same reasoning as in the deriva- 
tion of (4). Since n~_~/n~O(1) we get, for sufficiently large g, 

R F ..~ 2nl~z/391/3. (11) 

If this value is compared with the hydrodynamic component HF, then, given the condition 

g < (2anaS/3S) ~ , ( 12 )  

the relaxation F~ is determined by the R1ccati component RF, and consequently (7) has the 
analytic soiutio~ 

0 t 

Fg = exp (-- t/TF) (t  -- Fg) Cv,.4 F + F~ -- CF/AF', T7 ~ (g) = Cv --  Av, (13 )  
exp (-- t/TF) (1 -- FOg) -7 FOg -- CF/A F 

where F~=Fg (t=0). It follows from (13) that when t-+a, Fg--~-I for Tv>0. This 
entails a quasi-stationary distribution with Ig = 0 (see (6)). When ~F<0 an analytic 
solution of (7) is difficult to obtain, since the effect of the nondiagonal component E F 
cannot be neglected in that case. The expression for x F shows that x F changes sign at g = 
g,; it increases with g, remaining positive for g < g, and becoming negative in the opposite 
case. The quantity g, thus defines the quasi-stationary distribution cutoff, as long as con- 
dition (12) is satisfied. 

In order to analyze (i) for g > g,, we use another nonlinear substitution [19]: 

Gg ~ Ig+ i/Ig. (14)  

We get as a result a set of equations similar to (7)-(I0), i.e., 

Gg = BG(g) -~ EG(g) - /  He(g); 

]:l.G(g) ~ AGG ~ + BGGg + CG; 

E6 = k~-1 (1 - -  Gg/Gg_l) --  kg+l (i --  Gg+l/Gg ) G2g; 

ng_ing+l- ng 
) S 3 gV3 

(15) 

If we evaluate the hydrodynamic component H G for sufficiently large g, we obtain S/S  >~ 20/3g 1/a 
and, assuming the function ng is smooth H o "~--Gg'S /S .  The component R G is evaluated 
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similarly to (If), i.e., Re --~2n1~/3g~/3. We can accordingly find a number gs below which 

the relaxation Gg corresponds to the Riccati component RG, and above which it corresponds to 
the hydrodynamic component HG, viz., 

The derivation of (16) is based on the fact when g--~g~, Gg-~l (since Gg-~ifor g < gs)- 
Let us examine the condition under which the solution of the Riccati equation for Gg with R G 
in the right-hand side tends to unity. The general form of (.15) is in that case similar to 
(13), i.e;, 

G~(t) = ox~(- :/~) ( ~-co~) c~/A~ + c ~ - c u . %  ~ = co - A~, (17)  
( - -  - -  + c o  _ ' 

where Gg = Gg (t = 0). Analysis of (17J shows that ~G > 0 for g < g~ and increases with g; 
conversely ~G < 0 for g > g, (i.e., Gg i when g > g.~). An analytic solution cannot be 

found when g < g,, for the same reason as in the case of the F variables when g > 0. Thus, 
when g > g,, a quasi-stationary distribution is produced in the system, with Ig = const (see 
(14)). Its cutoff point is gs, beyond which the relaxation Gg is determined only by the 
hydrodynamic parameters. 

Since the distribution producing a constant current builds up within a short time, it is 
reasonable to identify the largest size gs at which it is established with the phase boundary, 
and to consider the rate of formation of condensate as the current through a cross section 
g = gs in size space. 

2. Quasi-StationaryDistribution and Nucleation Current. In order to calculate the quasi- 
stationary current and cluster-size distribution, we need boundary conditions for the distribu- 
tion function. The first boundary condition involves the quantity ngs+ I . Since ngs+ I is 

a slow variable (see Sec. i), ngS+l~exp(--(@e--Q)(g s+ i)2/3)<<I and this leads to a boundary 

condition similar to that in classical theory, i.e., ngs+l =0" The other boundary condi- 

tion is rig, = i , as the quasi-stable distribution ng= 1 is produced at g = g~. Calcula- 

tions similar to [3] then yield the following formulas for the quasi-stationary current: 

/ s t  = an/J(gs), 
~s gs ( 1 8 )  

g=g,  g 

w h i c h  a r e  v a l i d  f o r  g s  > g , "  The f o r m u l a  f o r  I s t  when g ~ g ,  r e q u i r e s  f u r t h e r  a n a l y s i s ,  b e -  
c a u s e  t h e  s o l u t i o n s  h a v e  t o  be  m a t c h e d  i n  t h e  n e i g h b o r h o o d  o f  t h e  p o i n t  g = g , .  S i n c e  t h e  
quasi-stationary distribution is close to quasi-stable in the range g < g, (see [i]), the 
simplest interpolation would be to assume a quasi-stationary distribution throughout the size 
range g < gs- 

Thus, when gs > g, the nucleation current given by (18) is virtually the same as in the 
classical current, but the critical nucleus size gs defined by (16) may be significantly dif- 
ferent from the classical size g, and its value is dependent on the rate of change of the 
saturation. This dependence imposes stringent requirements on experimental conditions and 
makes it necessary to measure some new parameters, specifically S. 
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